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der of the relationships to be considered, but the al-
gorithms proposed here can discover these relations as
the search progresses. In addition, these evolutionary
algorithms can handle constraints on the domain of
each variable easily.

The paper is organized as follows. The next section
briefly reviews evolutionary algorithms that use ex-
plicit models of the solutions to guide the search. Sec-
tion 3 describes some existing supervised and unsuper-
vised discretization algorithms and the corresponding
evolutionary algorithms. Finally, section 4 summarizes
the paper and offers some recommendations for future
research.

2. Building Models to Guide the Search

The idea of building probabilistic models and using
them to guide the search has been around for some
time. As we would expect, the complexity of the mod-
els has increased over time as the methods of build-
ing models from data mature and more powerful com-
puters become available. This section briefly reviews
the previous work on evolutionary model-building al-
gorithms. The interested reader should consult the
reviews by Pelikan et al. (1999) and Larrafaga et al.
(1999) for a more complete exposition of this area.

The simplest model-building evolutionary algorithms
use a product of univariate and independent proba-
bility distributions as the model of solutions. Baluja
(1994) introduced the Population-Based Incremental
Learning (PBIL) algorithm. The PBIL uses a binary
alphabet and its model is updated using a variation
of the Hebbian learning rule used in neural networks.
The compact GA (Harik, Lobo, & Goldberg, 1998)
is another example of algorithms that use univariate
models and operate on binary alphabets. The main
difference with PBIL is that the learning rule mimics
the behavior of a simple GA with a finite population
size and uniform crossover. Closer to the algorithms
presented here, the univariate marginal distribution al-
gorithm (UMDA) estimates the probability densities
from the individuals that survive the selection pro-
cess (Miihlenbein, 1998).

Servais, de Jager, and Greene (1997) extended PBIL
to discrete alphabets of higher cardinality and Sebag
and Ducoulombier (1998) extended it to continuous
variables. The model used by Sebag and Ducoulom-
bier is a product of normal densities, and is similar
to the model used by Rudlof and Képpen (1996) for
their algorithm. The difference is in the rules used to
adapt the parameters of the distributions in each case.
Other algorithms that operate on continuous variables

use more sophisticated univariate distributions. For
example, Gallagher, Frean, and Downs (1999) used a
mixture of normal distributions.

More sophisticated algorithms such as MIMIC
(de Bonet, Isabell, & Viola, 1996) and the BMDA (Pe-
likan & Miihlebein, 1999) capture relationships be-
tween pairs of variables. The experimental evidence
provided in the papers cited above suggests that, in
many practical situations, simple uni- or bi-variate
models are sufficient to find acceptable solutions.
However, these results do not extend to more difficult
problems that have interactions between more than
two variables.

Other algorithms use richer models that allow rela-
tionships among arbitrary number of variables. Pe-
likan, Goldberg, and Canti-Paz (1999), Etxeberria
and Larrafiaga (1999), and Miihlenbein and Mahnig
(1999) introduced algorithms that learn Bayesian net-
works to represent the selected individuals. However,
these algorithms consider only discrete variables. We
could discretize the domain variables as a preprocess-
ing step, but this would not be very efficient. For ex-
ample, if the discretized variables are discretized into b
bins, a node in a Bayesian network with n — 1 parents
would need b" bins to represent the joint distribution
of the n variables.

Larranaga et al. (1999) proposed several algorithms
for continuous domains. Their approach was progres-
sive: first, they proposed a univariate algorithm that
performs statistical tests to determine which of the
candidate distributions best fits the data before deter-
mining the parameters; then they adapt the MIMIC
bi-variate algorithm, and finally they propose a multi-
variate method based on learning a Gaussian net-
work. The multivariate method begins with a com-
plete Gaussian network, and performs all possible edge
exclusion tests to identify conditional independences
among the variables. If there are n variables, there
are n? edges, so the algorithm may not be very effi-
cient in high-dimensionality problems.

The more sophisticated model-building algorithms
can consistently solve problems with complex inter-
actions among many variables. However, construct-
ing probabilistic networks from data is a costly oper-
ation. Bosman and Thierens (1999) proposed a gen-
eral framework for evolutionary model-building algo-
rithms, and showed how many of the existing algo-
rithms can be instantiated from the framework. In
addition, Bosman and Thierens discussed several ways
to estimate the density of the selected solutions and
examined the complexity of various algorithms. They
showed that in the multivariate case, the complexities
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Abstract

This paper introduces simple model-building
evolutionary algorithms (EAs) that operate
on continuous domains. The algorithms are
based on supervised and unsupervised dis-
cretization methods that have been used as
preprocessing steps in machine learning. The
basic idea is to discretize the continuous vari-
ables and use the discretization as a simple
model of the solutions under consideration.
The model is then used to generate new solu-
tions directly, instead of using the usual oper-
ators based on sexual recombination and mu-
tation. The algorithms presented here have
fewer parameters than traditional and other
model-building EAs. We expect that the pro-
posed algorithms that use multivariate mod-
els scale up better to the dimensionality of
the problem than existing EAs.

1. Introduction

Recently there has been a growing interest in evolu-
tionary algorithms (EAs) that build a probabilistic
model of promising solutions and generate new solu-
tions by sampling from the model. These algorithms
seem like a promising path to construct reliable opti-
mization algorithms that can solve difficult problems
in reasonable times. However, most of these algo-
rithms use discrete representations, which may not be
natural to the problem at hand. To work on continu-
ous domains, the users must discretize the problem’s
variables to a certain accuracy and decide on the al-
phabet and the encoding of the discretized variables.

This paper presents simple model-building evolution-
ary algorithms that work on continuous domains. The
algorithms are based on supervised and unsupervised
discretization methods that have been used in machine
learning algorithms in the past. The basic idea be-
hind the algorithms proposed here is to discretize the

real variables and use the discretization as a simple
model of the solutions under consideration. The model
is used to generate new solutions directly; the evolu-
tionary algorithm omits the usual operators based on
sexual recombination and mutation. We distinguish
between supervised discretization algorithms that use
a class label to find intervals and unsupervised algo-
rithms that do not use a label. In our case, the labels
are determined by the selection method of the evolu-
tionary algorithm.

Typically, discretization algorithms consider only one
variable at a time, and some model building evolu-
tionary algorithms that use simple univariate models
have been shown to succeed in a variety of problems.
However, it is well known that to succeed in problems
where there are significant correlations between sev-
eral variables, evolutionary algorithms must consider
the related variables simultaneously or use exponential
time. Therefore, we must consider multi-variate dis-
cretization methods. The discussion on this topic will
focus on supervised discretization, and specifically on
building decision trees that capture relationships be-
tween the most relevant variables, although we recog-
nize that other supervised and unsupervised methods
may also be adequate.

There are other evolutionary algorithms that operate
on floating-point variables directly, but they do not
use models to guide the search and may be limited to
problems without significant interactions among many
variables. However, these algorithms have been useful
in many continuous domains and we can borrow some
elements from them, such as a mutation operator that
we use as a secondary search operator.

One of the benefits of the algorithms presented here is
that they have fewer parameters than traditional and
other model-building EAs. For example, since there
have no recombination or mutation there is no need
to choose these operators or their parameters. Other
multivariate model-building EAs need to know the or-



vary from O(n?) to O(n?) depending on the algorithms
used. This paper argues that in many cases simpler
multivariate models may be sufficient to solve difficult
problems reliably and quickly.

There have been other approaches to learn a model
to guide the search of EAs. For example, Michalski
(2000) introduced a system that induces rules that
classify individuals into three groups depending on
their fitness values. The rules are used to generate
new individuals. Michalski’s method can operate on
continuous variables, but they have to be discretized
first, so the algorithm includes a heuristic to modify
the discretization levels as the search progresses.

3. Discretization-Based Evolutionary
Algorithms

One way to characterize discretization methods in ma-
chine learning is to focus on whether they use informa-
tion about the class label to determine the intervals. In
an analogy to machine learning algorithms, the meth-
ods that use class information are called supervised,
and those that do not use additional information are
called unsupervised.

3.1 Unsupervised Methods

The simplest unsupervised discretization method is to
divide the range of observed values into b bins of equal
width. Although it is easy to implement, this method
is very sensitive to outliers, and may not adequately
represent the distribution of each variable. The user
has to specify the number of bins b. This method
computes the bin boundaries at

max; — min;

b

where min; and max; are the observed minimum and
maximum values of the ¢-th variable, and k£ =1, ..., .

min; + k,

Another unsupervised method is to divide the range
into b bins of equal frequency (so if there are n val-
ues, each bin would contain n/b elements). The equal
frequency method is not susceptible to outliers, and
the intervals would be closer to each other in regions
where there are more elements and farther apart in
sparsely-populated regions. This method can repre-
sent the distribution of each variable better than the
equal width method. The user still has to decide the
number of bins b.

The corresponding evolutionary algorithm is the same
for these two unsupervised methods. The core loop is
to perform selection to obtain ns promising solutions,
discretize each variable of these solutions indepen-

dently, and for each variable generate n/b uniformly-
distributed random numbers in each bin. These ran-
dom numbers correspond to the values of the variable
in the new population. Since the discretization cap-
tures the distribution of the selected individuals, we
expect that the new individuals will have the same
univariate marginal distributions than the selected in-
dividuals. This does not guarantee that the fitness
values of the new individuals will be as good as the
selected ones, unless the hypothesis of the variables
being independent holds. We recognize that this hy-
pothesis is not true in most practical problems, but
the experimental results with other EAs that make
the same hypothesis suggests that this method can be
applied successfully even where there are dependen-
cies, although it is probably limited to cases where the
dependencies do not involve many variables.

This algorithm monotonically reduces the range of val-
ues for each variable after every generation, which is
desired as we want to narrow the search to the most
promising regions. But if the algorithm narrows the
search too fast, it may impede a proper exploration
of the search space, which might impact negatively
the quality of the solutions found. A possible solu-
tion would be to use a large population to sample
the search space better, but larger populations repre-
sent additional computational costs. Another solution
would be to adopt a mechanism that slightly enlarges
the range of values generated for the new population.
One possibility would be to add additional bins with a
few elements at the extremes of the discretized range,
but this creates a few additional design decisions (e.g.,
what is the range of the additional bins and how many
elements should we put in them?) that would make the
algorithm more difficult to use. Another possibility is
to adopt a mutation mechanism: with a low probabil-
ity substitute the value of one of the new variables by
a random value generated with a normal distribution
with the mean and variance of the selected individuals.

Possibly the major problem with the methods de-
scribed in this section (and other algorithms that de-
pend on uni-variate models) is their inability to repre-
sent accurately disjoint regions of promising solutions.
Consider the example depicted in figure 1. The small
circles represent points that were selected by the algo-
rithm because their observed fitness values are high.
The algorithm would proceed to discretize the entire
range of the selected individuals, which includes a large
area of low performance. The equal-width bins method
would be very sensitive to this problem since a large
fraction of its bins would represent the range where no
individuals were selected, and many individuals will
be generated in the low-performing region. The equal-



Fitness

Figure 1. A fitness landscape with two disjoint high-
performance regions.

frequency method would also generate individuals in
the low-performance region, but many less than the
equal-width algorithm.

Certainly, it may be useful to generate a few points
in the regions where the observed performance of a
variable is low, because it may be possible that the
apparent low-performing region has not been sampled
adequately and good solutions were missed. In addi-
tion, it might be possible to reach good results when
the observed low variable is paired with other variables
in regions that have not been sampled yet. However,
in situations like those in the example above, where
the low-performance region dominates the range of a
variable, it may be wasteful to use these methods. The
next section proposes methods that do not suffer from
this problem.

3.2 Supervised Methods

The general idea of supervised discretization methods
is to create intervals where all or most of the data in-
stances have the same label and the labels are different
across several intervals. Most supervised discretization
methods have been used in combination with classifi-
cation algorithms.

Supervised discretization methods assume that the
data instances are labeled with the class to which they
belong. The “supervised” name comes from an anal-
ogy where a “teacher” assigns labels to the instances
and then evaluates the models created by the algo-
rithm. In our case, the teacher is the selection method,
and the individuals have binary labels corresponding
to whether they were selected or not.

Holte (1993) proposed a simple algorithm that con-
sists on sorting the observed values of a variable and
greedily dividing the domain into bins that contain in-

stances with the same label. Since this could lead to
having one bin for each observed value, each bin is
constrained to have a minimum number of elements.

Fayyad and Irani (1993) proposed a recursive method
that finds intervals that minimize the class information
entropy. We follow closely the notation of Dougherty
et al. (1995). If we are given a set of instances S, a
particular variable ¢, and a partition boundary 7', the
entropy of the partition induced by 7' is
|51 |5y |
Ent;(S,T) = 5] Ent(S;) + K
where S; and S, are the sets on the left and right re-
spectively of the boundary T'. The optimal boundary
T* that minimizes the entropy is chosen to partition
the range, and the algorithm is applied recursively to
the sets S; and S;.. The stopping criteria is based on
the minimum description length principle. The result-
ing intervals will be closer to each other in the regions
with high entropy, and far apart in the uniform regions
where the entropy is low.

Ent(S;),

In a sense, the supervised discretization methods cre-
ate a rough model that predicts the class label based
on the intervals. This model is likely to be too in-
accurate to have a practical value as a classification
algorithm, especially because it is based on a single
feature, but it may be sufficient to guide the search of
an evolutionary algorithm. After all, other EAs with
univariate models perform well in some domains.

The corresponding evolutionary algorithm is the same
for these two supervised methods, and is similar to the
EA for unsupervised methods. The core loop is to ap-
ply the selection method to label the individuals, dis-
cretize each variable using all the individuals (not just
the selected), and generate uniform random numbers
only in the intervals that correspond to the selected
individuals. Note that this algorithm can easily rep-
resent disjoint regions of promising solutions, and the
ranges of promising solutions also decrease monotoni-
cally.

As we mentioned above, it might be useful to gener-
ate a few points in the regions of low performance.
This observation might prompt some to modify the
sampling procedure described above to generate a few
points that correspond to the not-selected regions.
However, this is not necessary, because all the popular
probabilistic selection methods assign a non-zero prob-
ability of selection to all individuals, including those
with low fitness. The exception are deterministic se-
lection methods, such as truncation or (u T A), that
select the top performing individuals.

The natural extension of these algorithms is to con-



sider multivariate discretization. This, of course, is
much more complex than discretizing one variable at a
time, but we can continue to borrow from the machine
learning field and use inductive learning algorithms to
build a model of the individuals based on their labels.

For example, we can use decision trees as supervised
discretization methods. Note that Fayyad and Irani’s
method can be regarded as building a tree on one vari-
able. Kohavi and Sahami (1996) used C4.5 to dis-
cretize continuous variables as a preprocessing step in
a classification task, but only applied it to a single
variable. The idea is to use the binary splits of the
tree as the threshold values for discretization. Kohavi
and Sahami (1996) note that the main difference be-
tween this method and Fayyad and Irani’s top-down
method is the stopping criterion. C4.5 builds an entire
tree in a top-down fashion that must be pruned (in a
bottom-up fashion) before using the splits.

We may use decision trees to build a multi-variate
model of the current solutions in a EA. The selec-
tion mechanism provides a label for every individual
and the tree-building algorithm attempts to partition
the solution space to minimize some impurity mea-
sure. The result is that the majority of the elements
in a partition belong to the same class (i.e., selected
or not-selected). The evolutionary algorithm can then
use the tree to generate new individuals that corre-
spond to the selected class.

Decision trees have been used with great success in
classification tasks across a wide range of domains. De-
cision trees are popular for several reasons: they are
fast to create, reasonably accurate in many domains,
and easy to interpret by domain experts. The first
two of these characteristics make decision trees very
appealing to guide the search of EAs. For our pur-
poses, the interpretability is not critical, but it may
be interesting to observe how the trees change as the
search progresses.

Another important characteristic that makes decision
trees appealing is that they ignore variables that do
not seem related to the class label. In classification
problems this is a great advantage, because it makes
fewer demands of preprocessing feature selection al-
gorithms. In our case, ignoring irrelevant variables is
also an advantage, because it permits the algorithm to
focus on the variables that have the greatest influence
on the fitness at a particular stage during the search.
In a sense, this reduces the dimensionality of the prob-
lem over time. However, using trees introduces some
difficulties on the generation of new individuals.

When the tree induction is complete, the path from

the root to each leaf represents a conjunction of condi-
tions that can be regarded as the antecedent of a rule.
The label in each leaf indicates the class of the individ-
ual that satisfies every condition, and can be regarded
as the consequent of the rule. It is not necessary that
every rule (or path) involves all the variables that de-
scribe an individual, and it is possible that the same
variable appears more than once in the same rule.

To generate the new individuals we use only the rules
that correspond to the selected individuals. One rule
is considered at a time, and one individual is generated
from each rule. We could use the rules in a round-robin
fashion to ensure that the rules get equal representa-
tion in the next population, or we could choose rules
probabilistically based on the number or average fit-
ness of the selected individuals that they represent.
If a variable appears more than once in a rule and it
defines an interval, then we simply generate uniform
random numbers inside that interval. If a variable only
appears once, then the missing extreme value can be
the upper or lower limit of the variable (if it is known)
or an arbitrary limit based on the current distribution
of values (e.g., two times the standard deviation of
the observed values in the current population.) What-
ever we choose, if the variable appears once, some val-
ues would not be explored in the next generation, and
the search would still being focused on promising so-
lutions.

The most challenging difficulties occur if a variable
does not appear in the rule, which is a case that we
expect to happen frequently. It could be that the vari-
able is irrelevant, so we could just generate a random
number. But we have to consider that the variable
may not be relevant at the current search stage, but
it may have been relevant before, and actually it may
have converged already to a unique value. To keep
track of this situation, we complement the rules with
a global template that keeps track of the ranges of
the variables generated over the execution of the al-
gorithm. The template would be updated every gen-
eration with the ranges of the new individuals. With
this template, if a variable does not appear (or if only
appears once) we can generate random numbers in the
observed range. If a variable was relevant in an earlier
stage of the search, and even if this variable has con-
verged to a single value, the template would ensure
that the new individuals have values that represent
promising solutions. As before, mutations should be
used occasionally.

Of course, we are not limited to use decision trees to
build multivariate models of the current population,
we could use any other learning algorithms that works



on continuous domains, but unfortunately there are
not many such algorithms. The approach followed
here was to view discretization algorithms as learn-
ing a rough model of the current population. If we
follow this approach we can foresee the application of
other discretization algorithms such as the algorithm
of Kozlov and Koller (1997) and vector quantization.

4. Conclusions

This paper proposed several evolutionary algorithms
based on supervised and unsupervised discretization
methods. First we discussed algorithms that dis-
cretize variables independently, which are similar to
uni-variate model building EAs. We identified some
potential shortcomings of these algorithms. Then we
presented multivariate discretization based on decision
tree induction.

The tree-based algorithms appear promising because
tree induction methods avoid irrelevant features. This
is equivalent to reducing the dimensionality of the
search space dynamically, because those variables that
are irrelevant at a particular stage of the search will
be ignored. Because of this, we expect that these al-
gorithms scale up better to the dimensionality of the
search space than other model-building EAs.

In the future the algorithms will be tested on mul-
tiple continuous function optimization problems and
compared against traditional and model-building EAs.
There are multiple opportunities to extend the algo-
rithms proposed here. For instance, unsupervised clus-
tering algorithms can be used to discretize the domain,
and they can be applied to single or multiple variables
at a time. Likewise, there are other supervised dis-
cretization and machine learning algorithms that can
be used to guide the search of an EA.

The algorithms presented here are easier to use than
traditional and model-building EAs because they have
fewer parameters. Although it is impossible to con-
struct optimizers that perform well on all possible do-
mains, the algorithms presented here represent a step
toward the automatic, reliable, and accurate solution
of difficult optimization problems.
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